Chebyshev Centers and Approximation in Pre-Hilbert C*-Modules
Authors
Abstract:
This article doesn't have abstract
similar resources
Relative Chebyshev Centers in Hilbert Space
We characterize inner product spaces in terms of the relationship between the relative Chebyshev center of a set and the absolute Cheby-shev center of an associated set. A consequence of the characterization is that an existing nite algorithm can be adapted to calculate the center of a nite set relative to a nite dimensional aane space. We also discuss the case where the constraint set is nonli...
full textG-frames in Hilbert Modules Over Pro-C*-algebras
G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...
full textHilbert modules over pro-C*-algebras
In this paper, we generalize some results from Hilbert C*-modules to pro-C*-algebra case. We also give a new proof of the known result that l2(A) is aHilbert module over a pro-C*-algebra A.
full textVariational inequalities on Hilbert $C^*$-modules
We introduce variational inequality problems on Hilbert $C^*$-modules and we prove several existence results for variational inequalities defined on closed convex sets. Then relation between variational inequalities, $C^*$-valued metric projection and fixed point theory on Hilbert $C^*$-modules is studied.
full textMy Resources
Journal title
volume 36 issue No. 2
pages 209- 216
publication date 2011-01-03
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023